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ABSTRACT

The damping modeling strategy for naval ship system is presented for ship shock
transient time-domain analysis. The Complex Exponential Method is used for extraction
of modal parameters in time-domain. Inverse Fourier Transform of Mobility form for
general viscous damping model is used to verify the calculated modal parameters.
Rayleigh damping parameters are calculated using modal frequency and modal damping
ratios. The statistical characteristics of Rayleigh damping parameters are quantified and
evaluated in each categorized area: keel, bulkhead and deck. Then the Rayleigh damping
parameters are recommended for ship shock response prediction. The damping studies

were conducted using 2000 ms data based on DDG 53 Ship Shock Trial.
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I. INTRODUCTION

Mechanical energy transforms into heat and dissipates in all vibrating systems.
There are many energy dissipation mechanisms that contribute to the damping in the
structure system. Some of these mechanisms are: fluid resistance and coupling, internal
friction (material damping), and friction at a joint. All of these dissipation mechanisms
have been shown to be a function of many variables, including a structure’s shape or
geometry, its material properties, temperature, frequency, boundary conditions, and
different excitation energy levels. Usually over 90 percent of the inherent damping
associated with fabricated build-up structures originates in the mechanical joints (Beards
and Woodwat, 1985). These mechanical joints are friction joints, which dissipate energy
during the vibration of a structure. Reducing the contact force in bolted structural

connections can reduce system vibration amplitudes by enhancing joint damping capacity

(Shin et al., 1991).

Naval ship structure systems have mostly welded joints and all stiffeners are also
welded to hull plates, decks and bulkheads. The ship system also has many energy
dissipation sources such as long cable trays, hangers, snubbers, the surrounding fluid
coupled with ship hull, etc. The ship system damping is measurable, but difficult to
quantify (Rutgerson, 2002). In conjunction with ship-shock simulation based transient
analysis, time-domain representation of system damping is desirable using the frequency-
domain characteristics of damping. The damping studies used for analysis were

conducted using 2 sec data from the DDG 53 Ship Shock Trials.

The goal of this study is to present the damping model in Rayleigh damping form
of a naval ship system for ship shock transient time domain analysis. In this study, the
Complex Exponential Method is used for extraction of modal parameters in the time
domain. The Inverse Fourier Transform of Mobility form of the general viscous damping

model verifies the calculated modal parameters. Two factors in the Rayleigh damping



model are calculated using modal frequency and modal damping ratios. The statistical
characteristics of two Rayleigh factors are quantified in each categorized area. Then the
spatially dependent Rayleigh damping model is investigated and a model to be used in

shock transient analysis is recommended.



II. THEORY OF GENERAL VISCOUSLY DAMPED SYSTEM

The general equation of motion for a MDOF (Multi Degree Of Freedom) system

with viscous damping and harmonic excitation is:

[M{E}+[C]{} +[K ]{x) ={f} (1)

In the above equation, [M] is the system mass matrix, [K] is the system stiffness
matrix, [C] is the system damping matrix, {x} is the system response vector and {f} is the

forcing vector.

We consider first the case where there is zero excitation in order to determine the
natural modes of the system and to this end, we assume a solution to the equations of

motion which has the form

{xj={x}e" @)

(s [M]es[C]+K]) ) = {0} o

the solution of which constitutes a complex eigenvalue problem. In this case,
there are 2N eigen values, s, in complex conjugate pairs. (This is an inevitable result of

the fact that all the coefficients in the matrices are real and thus any characteristic values,

or roots, must either be real or occur in complex conjugate pairs.) There is an



eigenvector corresponding to each of these eigenvalues, but these also occur as complex

conjugates. Hence we can describe the eigensolution as:
* %
S, and {s} , {§ }, r=1LN @)

It is customary to express each eigenvalues s, in the form

s, =0, (=C, +i1-¢?) )

where @, is the ‘natural frequency’ and ¢, is the critical damping ratio for that
mode. Sometimes, the quantity @, is referred to as the ‘undamped natural frequency’ but

this is not strictly correct, except in the case of proportional damping (or, of course, of a

single degree of freedom system).

The eigen solution possesses orthogonality. In order to examine these we must

first note that any eigenvalue/eigenvector pair satisfies the equation
(2] s, [CT+[K]) (v}, = {0} ©

and then we pre-multiply this equation by {z//}g so that we have:

v, (57 [M]+s, [CI+[K]) {w}, = {0} )



A similar expression to (6) can be produced by using 4, and {y/},:

(s [M]+s5, [Cl+[K]){w}, = {0} ®

which can be transposed, taking account of the symmetry of the system matrices,

to give:

twh, (i [M]+s, [C]+[K]) = {0} ©)

If we now post-multiply this expression by {y}, and subtract the result from that

in Equation (7), we obtain:

(573w M1}, + (5,5, L [CTw), =0 o

and provided s, and s, are different, this leads to the first of a pair of

orthogonality equations:

(s, +5, ){w}, [MI{w}, + v}, [Cllw}, =0 (in

A second equation can be derived from the above expressions as follows:

Multiply (7) by s, and (9) by s, and subtract one from the other to obtain:



s, Y 1M1}, - )] [K]fw), =0 2

q

These two equations - (11) and (12) — constitute the orthogonality conditions of
the system and it is immediately clear that they are far less simple. However, it is
interesting to examine the form they take when the modes r and q are found as a complex

conjugate pair. In this case, we have that

5,=0,(=¢, —iJ1-¢7) (13)
and also that,
i, =y}, (14)
Inserting these into Equation (11) gives

20,6y My}, +y 3 [Clw}, =0 5

from which we obtain:

_WwCly), _ ¢
W My, m,

208, (16)

Similarly, inserting (13) and (14) into (12) gives
6



oy W IMHy}, — v Ky}, =0 (17)

from which

oo W LK, K

"W My, m, "

In these expressions, m, , k. , and ¢, may be described as modal mass, stiffness

and damping parameters respectively although the meaning is slightly different to that

used in the other systems.
A. FORCED RESPONSE ANALYSIS

Returning to Equation (1), and assuming a harmonic response:

x(t)} ={x}e" (19)

we can write the forced response solution directly as

() =[[K]- 0’ [M]+i0[C]] {f} 0)



but this expression is not particularly convenient for numerical application.
Define a new coordinate vector {y}, which is of order 2N, and which contains both the

displacements {x} and the velocities {x} :

X
=1, 21)

X (2Nx1)
Equation (1) can then be written as:
[C:M]Nsz{y}szl +[K 0]y} = {O}le (22)

However, in this form we have N equations and 2N unknowns and so we add an

identity equation of the type:
[M :0]{y} +[0:=M]{y} = {0} (23)

which can be combined to form a set of 2N equations

cC M) .. (K 0 0
v oo /Wl (24)

which can be simplified to:



[A]1y}+ [B]{y} =10} (25)

These equations are now in a standard eigenvalue form and by assuming a trial

solution of the form {y} = {y}e”, we can obtain the 2N eigenvalues and eigenvectors of

the system, A and {9}, , which together satisfy the general equation:
(4[4]+[BD1), =10;;  r=12N (26)

These eigen properties will, in general, be complex although for the same reasons
as previously they will always occur in conjugate pairs. They possess orthogonality

properties, which are simply stated as

(014110} =| "a

_ _ (27)
T e
{0y [BI{Oy=| b,
and which have the usual characteristic that
b
A =—-—L r=1,2N (28)
a

Now we may express the forcing vector in terms of the new coordinate system as:



{Pna = {{ } (29)

and assuming a similarly harmonic response and making use of the previous

development of a series form expression of the response. We may write:

(30)

x | {6} {p}{o},
{ia)x} _Z

= a (io-s,)

However, because the eigenvalues and eigenvectors occur in complex conjugate

pairs, this last equation may be written as:

{‘x }:i 0}, {p} {6}, | {0}, {p}{O'}, (31)
lwx

=\ a.(o-s)  al(io-s)

At this stage, it is convenient to extract a single response parameter, sayx,,

. . . k
resulting from a single force such as f; - the receptance frequency response function, «; ,

and in this case Equation (31) leads to:

x] . k . a r gj rek r 9]* }”9/:
—“=aj(@)=) | —— (Rals (32)
Ji “\a (iow-s) a (io-s.

or,
10



N A, A

k r* jk r 7 jk
/(@) Z:; (iw=-s,) (iw—s,)

* *

A _ rej rek A* _ rej rek

where, A, =———, A, =———
a a,

r

Equation (34) describes the displacement response at ‘j° degree of freedom
under excitation at ‘k’ degree of freedom of general viscously damped system in

frequency domain. If Fourier Transform is made onto Equation (34), we can get the

Impulse Response Function £, (¢) of this system.

*

1 2 .4, A, ),
h. (t)=— LE 4+ TP edow  35)
#() 2%‘[021: (io—s) (io—s)

If we let (iw—s,) as iz, then, by Cauchy’s Integral Formula, it becomes:

00 st o j
1 A " ' A 'kevr ezzt
_[ — e dow="""- I dz=,4,e" (36)
27 ® (iw—s,) 2ri Yz
and similarly,
1 = A"fk . A"fk e X o .
I reJ . ela)t da) — rej ‘ I dZ — rAjkesrt (37)
2 ¢ (iw—s,) woc oz

11



From Equations (36) and (37), the Impulse Response Function of a general

viscous damping system can be written as:
N *
_ St * st
hjk(t)—Z(rAjke +, 4, e ) (38)
r=1
The forced response can then be calculated as Equation (39) in time domain.

xj=

Se(@ h, (t-7)dr (39)

ot—.w
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III. PROCEDURE OF DAMPING CALCULATION FROM
MEASURED DATA

A. MODAL PARAMETER EXTRACTION

*

In Equation (34), .4, .4,, s,, s, are called modal parameters,

* . * . . .
cAy s Ay are called modal constants, and eigenvalues s, s. contain information of

modal properties such as modal frequency @, and modal damping ratiod.. Calculation

of damping ratio from the measured shock trial data needs utilizing modal parameter
extraction methods, the simple 3-dB (half power) bandwidth measurement or logarithmic
decay rate calculation can be incorrect in real cases, because, in usual cases, real
measurement data not only contain noise components but also have many closely coupled

frequency components.

Basically there are two groups of techniques in the field of experimental modal
analysis. One is related to frequency domain analysis methods that use Frequency
Response Function of measured input and output data. This group of methods is widely
used, from single degree of freedom circle fitting to complex multi-degree of freedom
fitting methods. And the other is related to time domain analysis techniques that use

Impulse Response Function as analysis data.

In this study, the time domain method is used because the measured useful
shock trial data sets are too short in time to obtain sufficient frequency resolution in the
frequency domain, and there is only one event, shot data, thus the averaging process
cannot be done. Complex Exponential Method (CEM), one of the effective modal

parameter extraction methods in the time domain, is used to extract modal parameters.

The 2 second long measured data has been used in this study and the effective
frequency span is limited from 3 Hz to 250 Hz. The original measured data has been
band-pass filtered from 2 Hz to 250 Hz to avoid long-term trends in low frequencies and

to remove unwanted high frequency noise components.

14



1. Complex Exponential Method (CEM)

In the field of experimental modal analysis, a term Receptance is widely used to
describe the ratio of displacement response to excitation force, and the term Mobility is
used in describing the ratio of velocity response to excitation force. The Receptance

(displacement/force) a(w)of a general viscously damped system, Equation (34), can be

rewritten as Equation (40), complex eigenvalue s, is as in Equation (40.a),

*®

N
a(a))=Z 4 + 4 s, =—0.0, + joA1-C7 (40.a)

. ) *
r=1 JO—S, JO—=S,

or,

() =2ZNli ;s

r=1 JO =S,

=s., A= A ,for r>N (40b)

r

we can get velocity v ="Ve’ by time differentiating displacement x = Xe’*, that

18,

v=V(w)e’ =jowXe’™ ()

and Mobility(velocity/force) Y(@) can be related to a(w) (displacement/force),

15



Y(w) = joa(w) (41)

The corresponding Impulse Response Function (IRF) can be obtained by

taking Inverse Fourier Transform (IFT) of the Receptance «a(w) as Equations (35)

through (38),

2N
st
h(n)=) Ae 42)
r=1
By time differentiating, the velocity form of IRF can be expressed as,

_ 2N
h(t)= Z As e (43)
r=1

Then the measured velocity data set sampled by [t time steps can be expressed

as follows:
By ys Boyeeoeee, By = B(0), R(AD), RQAL), -, h(gAr) (44)
Hereafter, the exponential term will be simplified using the following notation.

e >V (45)

7

Thus for the j-th sample data, the Equation (43) becomes,

16



. 2N .
h; = Z As V/
r=I1

which, when extended to the full data set of ¢ samples (j=1,2,....,q), gives:

ho = SIAI + S2A2 + """ + SZNAZN
h= VisAd+ Vysydy, +--- + VonSonAon
o 2 2 2

hy= Vs 4 + V" 5,4, - + Von Sonday
- _ 14 q q

h, = Visi4d + Vylsydy +---- + Von'SonAon

(46)

(47)

Provided that the number of sample points q exceeds 4N, this equation can be

used to set up an eigenvalue problem, the solution yields the complex natural frequencies

contained in the parameters V,, V, , etc.

Multiply each equation in (47) by a coefficient, S, to form the following set of

equations:

Boly = fod + Loy +--ne + By y
Bl = P4+ prd, +-- + SVonAyy
Boh, = ﬂlezAl + ﬂszzAz T + ﬂzVZNzAZN

Bh, = BVIA+ BVIA, +e + BVon" Aoy

Adding all equations in (48) vertically results in,
17

(48)



q . 2N q .
1
2Bk =2 (4, 2 V) “9)
l:O ]:1 l:()
The coefficients £, s are taken to be the coefficients in the polynomial equation,

Bo+ BV +BYV:+ BV 4ok V=0 (50)

The roots are V,, V,, ---, V.

q -

Next, the values of the B coefficients are to be sought in order to determine the

roots of Equation (50) - values of V. - and hence the system natural frequencies. Now,

recalling that g is the number of degrees of freedom of the system model. It is now

convenient to set these two parameters to the same value, i.e. letq = 2N.

If we find B coefficients that make Equation (50) fulfilled, then Equation (50)

can be expressed as,
2N .
D BV/=0 : r=1.2N (51)
j=0

And thus every term on the right-hand side of Equation (49) is zero.

18



2N

> Bh =0 (52)

i=0

Rearranging Equation (52), by moving the last term of left-hand side to right-hand

side,

Z ,Blh = —th by setting IB2N =1 (53)

Repeat the process from (44) to (53) using different set of IRF data points and
further choose the new data set that overlaps considerably with the first set — In fact, for

all but one item.

Successive applications of this procedure lead to a full set of 2N equations:

by e |[ A )
}fl h.z h3 hz,N 3 él &:_<h2{v“> (54.2)
_th—l flzN h2N+1 /14N—2_ \ﬂzN—l, \]’.14N_1)

or,

|:];li|2N><2N {'B}szl = _{h} 2N (54.b)

19



The unknown coefficients {} can be found from Equation (54). Now the

values of V|, V,, ..., V,, can be determined using Equation (50) and subsequently the

system natural frequencies can be found using the following relationship.

_ st
V. =e (55)
Using Equation (47), corresponding modal constants 4, 4,, ..., 4,, can be
calculated, this may be written as,
1 1 1 e As, i
4 V, £ o Moy 4,5, hy
2 2 2 . 2 _ .
Vi v, v, N 2 1 sy =9 h, 0 (50
2N-1 2N-1 2N-1 2N-1 3
_I/l VZ I/B 1/3 i \AZNSZN/ \hZN—l,

or

(7114} = {n} (7)

20



2. Verification of Extracted Modal Parameters

The modal parameters calculated according to the mentioned procedure can be

verified by comparing synthesized time histories to the originally measured time

histories. Mobilities can be determined by frequency differentiation, multiplied by jw,

from Equations (40) and (41),

Y(a)) Z JwA, N ja)A:
L Jw—s, ja)—S;k

or

A, .
Y(a)) Z]w ;S =8,

~

rl]a) S

In Equations (58) and (59), extracted modal parameters 4., 4, s

s, =—m.0. + joJ1-¢7 (58)

A =4, for r>N (59

.
s, are used

ro

to calculate the synthesized Frequency Response Function in frequency domain. And by

inverse Fast Fourier Transform (IFFT), taking the real part of the results, synthesized IRF

can be calculated and compared to original time histories. Frequency bandwidth Af

should be multiplied during calculation procedure to generate band level.

{h} = Real Part of Inverse FFT (Af Y ) (60)

21



3. Calculation of Rayleigh Damping

Rayleigh damping is a kind of general proportional damping model. It assumes
that damping matrix [C] in Equation (1) can be represented as linear combination of the
mass matrix and stiffness matrix. Then the damping matrix can be easily decoupled to the
modal damping matrix. Using the Rayleigh damping representation, the damping matrix

can be represented as,
[Cl=a|[M]+p[K] 61)

or by using mass normalized modal matrix [¢],

(o] [Cllol=[20.4, ] =l + B 7 ], G

diag

By using Equation (62) for all 2N modes, following 2N equations can be set.

a+,8a)12 =2w,(,

o +,Ba)22 =2w,¢, )

2
a+ Py =20,yC,y

or

:{Z}szl (64)



If 2N is larger than 2, then Equation (64) becomes over-determined, with 2
unknowns and 2N equations. By post-multiplying the transpose matrix of [W] to both
sides of Equation (64), we can get Equation (65).

a

W T
[ ] 2Nx2 ﬂ

[W] :[W]szzzv {Z}szl (65)

2x2N

Then two Rayleigh parameters o and 3 are calculated as,

a -1 T

Y :([W]szzN[W]szz) [W]

2x2 N {Z}ZNXI (66)

As a final step, modal damping ratios for each vibration modes are calculated in

each categorized area of ship.

{=a—+p— (67)

23



IV. RESULTS OF MODAL PARAMETER EXTRACTION

A. VERIFICATION RESULTS

Modal parameters for a total of 773 sets of measured data are calculated for each

measuring position and direction.

The following figures show some results of the modal parameter extraction
method according to the aforementioned procedure. Figure 1, Figure 3, and Figure 5
show the original measured data sets, while Figure 2, Figure 4, and Figure 6 show

synthesized curves with the calculated modal parametersw, , ¢, and 4,. The black line

shows parts of the original signal between the 125 msec point and the 1200 msec point.
The red line stands for the synthesized curve of those parts. The 125 msec parts of each
of the measured data sets are not included in analysis to avoid being mixed with the effect
of excitation signal. Also the latter parts that contain the secondary excitation are not
included in the analysis. This secondary excitation can be seen on Figure 1, Figure 3, and

Figure 5 around the 1250 msec point.
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Figure I. Measured Data at A2001AI
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Figure 2.  Synthesized Results at A2001A (between 125 msec and 1200 msec)
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Figure 4.  Synthesized Results at A2004A (between 125 msec to 1200msec)
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Figure 5. Measured Data at A3506V
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Figure 6.  Synthesized Results at A3506 (between 125 msec and 1200 msec)

B. RESULTS OF RAYLEIGH DAMPING CALCULATION

A total of 773 data sets were categorized into 67 area groups, based on the
location of the measuring sensor installation, as well as by the direction of measurement,

which were the athwartship and vertical directions of the ship.

Figure 7 through Figure 10 show some typical results of the Rayleigh
Damping coefficients calculated according to the aforementioned procedure, using
Equations (61) through (67). Each black square point is a mode. The red lines represent

the regenerated modal damping ratio using o and [ calculated in least-square sense.
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Each figure tagged as ‘Original’ in caption is from the initial step results, whereas the
others are of the final results, which have been modified by eliminating the unrealistic
and noisy components. From the ‘Original’ figures, we can identify that some of the
results are scattered and contain damping ratios, which cannot be regarded as reasonable
against the physical sense. Some modifications to the above results have been made. The
unreasonable damping data points have been removed from curve fitting o and 8. The

modes of which modal constants A4 are seriously less than one thousandth of the

maximum value in each measuring position have been removed. The modes that contain
damping ratios, which are greater than 0.5 have been removed. Likewise, the modes with
damping ratios that contain a great deal of scattered from the initial curve-fitted have
been also removed. The final results are shown in both of linear scales and logarithmic

scales.

The figures presented in Appendix A illustrate the damping calculation results for

the remaining areas that were studied.
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Figure 7. Modal Damping Ratio at Area 6, Athwartship Direction (Original)
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Modal Damping Ratio at Area 6, Athwartship Direction (Modified)
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C. CURVE-FITTED RAYLEIGH DAMPING o AND 3 FOR EACH AREA

The Curve-fitted Rayleigh damping coefficients, oo and B, for each categorized
area are presented in Table 1 and Table 2, for the athwartship and vertical directions,
respectively. Figure 2 is a profile view of the DDG 51 Arleigh Burke Class Destroyer.

This drawing shows the major transverse frame positions of the ship.
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Figure 11. Transverse Frame Locations of the DDG 51 Class Destroyer

Table 1. Rayleigh Damping Results for the Athwartship Direction by Area Group
Athwartship Nl;rlr(l)lzleersof
A?\Irga Deck Frame l;OZSIIt)l:rrtl Alpha Beta used iI.I
' s = starboard curvefitting
o and B
3 1 56 4'p-2's 2.05E+01 1.22E-06 70
6 1 126.5 CL-5's 2.14E+01 | 4.69E-06 8
7 1 142 20'p-20's 1.91E+01 | 5.08E-07 60
8 1 135 17's 1.29E+01 | 1.11E-05 35
10 1 171.5 CL-15's 2.09E+01 | 1.90E-06 61
11 1 37.5 5'p-CL 1.79E+01 1.04E-06 37
12 1 258 8'p 1.88E+01 | 5.74E-06 13
15 1 328 5'p-5's 1.71E+01 | 4.23E-06 71
16 1 375 25'p-20'p 1.90E+01 | 3.07E-06 31
18 2 86.5 11'p-11's 1.76E+01 1.34E-06 107
19 2.5 155 31'p-31's 2.04E+01 | 2.44E-07 60
20 2 137 22'p-CL 1.91E+01 | 1.72E-06 35
28 2 70 6's-10's 2.03E+01 | 2.11E-06 31
30 2.5 355.5 10'p-11's 1.95E+01 | 2.49E-07 55
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Athwartship Nli:::;rs()f
l?\]l's.a Deck Frame I;OZSII?:;: Alpha Beta used iI.l
s = starboard curvefitting
o and B
31 2.5 398 CL-8's 1.67E+01 1.50E-05 11
32 3 192.5 6'p-23's 2.14E+01 [ 2.63E-06 26
33 3 277 20'p-14's 1.98E+01 [ 4.04E-06 53
35 3 129 6'p-CL 2.45E+01 [ 5.90E-06 11
37 3 151 36'p-36's 1.76E+01 [ 2.34E-06 59
40 3 331.5 3's-CL 1.84E+01 | 2.18E-05 11
41 3 397.5 13'p-CL 1.94E+01 [ 1.39E-06 54
43 3.5 156 8'p-2's 2.00E+01 | 8.14E-07 125
48 4 174 11'p-11's 1.35E+01 1.91E-06 21
49 4 232.5 6'p-CL 2.23E+01 [ -1.26E-08 33
53 5 280 CL 1.66E+01 1.16E-05 19
54 5 322.5 17'p-15's 1.90E+01 1.30E-06 75
55 6 150 CL 2.05E+01 | 3.75E-06 29
56 6 160 CL 1.97E+01 | 3.11E-06 21
57 7 150 CL 1.77E+01 [ 1.30E-05 8
58 7.5 155.5 8's-CL 1.11E+01 | 8.42E-06 22
60 8 173.5 32'p-32's 1.40E+01 [ 4.19E-06 63
61 9 168 CL 1.17E+01 | 2.69E-06 32
62 171.5 25'p-25's 1.27E+01 [ 3.82E-06 33
64 10 174 6's-10's 1.93E+01 | 3.48E-06 17
65 11 181 CL 1.58E+01 | 7.18E-06 12
67 MD 281.5 4's-5's 2.02E+01 [ 3.14E-06 21
Table 2. Rayleigh Damping Results for the Vertical Direction by Area Group
Athwartship NL:::)%?SOf
?\Ir(f? Deck Frame gojlrt)frrtl Alpha Beta used ip
s = starboard curvefitting
o and B
1 1 60 2'p 2.12E+01 [ 3.54E-06 12
3 1 56 4'p-2's 1.96E+01 4.22E-07 33
4 1 100 15's 1.95E+01 | 4.08E-06 26
5 1 110 CL 1.97E+01 1.62E-06 55
6 1 126.5 CL-5's 2.16E+01 2.31E-07 12
7 1 142 20'p-20's 2.09E+01 2.11E-07 104
8 1 135 17's 2.05E+01 [ 7.79E-06 26
9 1 159 6'p-4's 2.04E+01 [ 1.07E-06 28
10 1 171.5 CL-15's 2.03E+01 1.16E-06 41
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Number of

Athwartship
Area Position m0d§s
No. Deck Frame p = port Alpha Beta used in
s = starboard curvefitting
o and B
11 1 37.5 5'p-CL 2.04E+01 | 2.77E-07 16
12 1 258 8'p 241E+01 | 3.18E-05 5
13 1 312.5 6'p-19s 1.67E+01 | 5.24E-07 79
14 1 324 7'p-6'p 1.96E+01 | 2.82E-06 21
15 1 328 5'p-5's 2.00E+01 | 4.19E-07 44
16 1 375 25'p-20'p 1.79E+01 | 8.38E-07 129
17 1 218 28'p-CL 1.55E+01 | 1.91E-06 72
18 2 86.5 11'p-11's 1.85E+01 | 1.82E-06 69
19 2.5 155 31'p-31's 2.03E+01 | -7.33E-08 42
20 2 137 22'p-CL 1.92E+01 | 7.08E-07 77
21 2 134 15's 1.63E+01 | 2.06E-06 22
22 2 161 12'p-3's 1.67E+01 | 3.18E-06 115
23 2 162 9's 2.06E+01 | 1.52E-06 39
24 2 306 4'p-7's 1.87E+01 | 1.53E-07 19
25 2 35 3'p-11's 2.23E+01 | 8.53E-07 34
26 2 452 6'p 1.94E+01 | 3.00E-07 28
27 2 458.5 12's-22's 1.84E+01 | 2.20E-06 46
28 2 70 6's-10's 1.75E+01 | 1.48E-06 31
29 2 75 12'p-3'p 2.11E+01 | 2.17E-06 19
30 2.5 355.5 10'p-11's 1.88E+01 | 8.61E-07 38
31 2.5 398 CL-8's 2.07E+01 | 1.51E-06 67
32 3 192.5 6'p-23's 1.70E+01 | 3.62E-06 55
33 3 277 20'p-14's 2.00E+01 [ 9.57E-07 99
34 3 119.5 4'p-6's 1.90E+01 | 1.02E-06 19
35 3 129 6'p-CL 1.96E+01 | 2.51E-06 40
36 3 149 19'p-16'p 2.16E+01 | 3.84E-06 5
37 3 168 12's 2.22E+01 | 1.73E-06 19
37 3 151 36'p-36's 1.63E+01 | 9.65E-07 54
38 3 318 -320 2'p-15's 2.22E+01 | 2.72E-07 65
40 3 331.5 3's-CL 2.07E+01 | 1.86E-06 47
41 3 397.5 13'p-CL 1.50E+01 | 2.77E-06 32
42 3.5 150 19'p-6's 1.81E+01 | 1.63E-06 49
43 3.5 156 8'p-2's 2.11E+01 | 1.50E-06 49
44 3.5 147 16'p-15'0 1.80E+01 | 2.82E-06 59
46 4 150 15's 2.23E+01 | 1.49E-06 31
47 4 156 3'p-CL 2.12E+01 | 1.27E-07 14
48 4 174 11'p-11's 1.90E+01 | 2.65E-07 25
49 4 232.5 6'p-CL 1.84E+01 | 1.01E-06 30
50 4 292 CL 1.66E+01 | 2.13E-06 16
51 4 78 2'p 1.77E+01 | 3.45E-06 7
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Athwartship Numlzier of

Area Position moces

Deck Frame - Alpha Beta used in

No. p = port .

_ curvefitting
s = starboard

o and B
52 4 96 CL 2.00E+01 | 2.52E-05 12
53 5 280 CL 2.04E+01 | -5.41E-08 42
54 5 322.5 17'p-15's 1.91E+01 | 3.35E-06 26
55 6 150 CL 2.25E+01 [ 3.10E-07 17
56 6 160 CL 2.03E+01 | 5.66E-05 12
57 7 150 CL 2.35E+01 [ 5.21E-06 7
60 8 173.5 32'p-32's 1.01E+01 [ 6.16E-06 10
61 9 168 CL 1.90E+01 | 9.63E-06 10
62 9 171.5 25'p-25's 2.09E+01 [ 4.86E-07 89
63 10 174 3's-CL 2.29E+01 | -1.24E-07 16
65 11 181 CL 2.01E+01 [ 4.57E-06 15
66 HOLD 433 2'p 1.29E+01 | 1.24E-05 10
67 MD 281.5 4's-5's 2.02E+01 | 2.84E-05 4

Table 3 shows the weighted mean value of o for each of the directions of motion.
The weighting factor, shown in the rightmost column of Table 1, is defined as the number

of modes used in the curve-fitting o and 3. Thus, it can be concluded that weighted mean

values of a are similar in both directions.

Table 4 shows the weighted mean value of B for each direction of motion, the
weighting factor is the rightmost column of Table 2, the number of modes used in curve-
fitting o and B. It can be concluded that weighted mean values in athwartship direction

are slightly larger than those of the vertical direction. Equation 68 is used to calculate the

mean o, coefficient,
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where the variable M stand for the of areas to be considered .

Table 3. Weighted Mean of o
Athwartship Direction Vertical Direction
18.4 19.2

Table 4. Weighted Mean of 3
Athwartship Direction | Vertical Direction

2.82E-06 2.09E-06
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Figure 12. Rayleigh Damping Coefficient a for Athwartship Direction on Deck 1
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V. EFFECTS OF DAMPING TO SHIP SHOCK RESPONSES

In the 1994, the USS JOHN PAUL JONES (DDG 53) was chosen as the
representative ship of the DDG 51 Arleigh Burke Class Destroyer and subsequently
subjected to a series of shock trials. Some seven years later in the summer of 2001,
similar ship shock trials were conducted on the USS WINSTON S. CHURCHILL (DDG
81). This latter series of live fire tests was performed on the 31% ship in the same class
due to the significant design changes incorporated into the Flight IIA version of this ship.
Some of the significant changes that were found in DDG 81 included an extension in the

ship’s overall length and the additional of two helicopter hangers.

Starting with a highly complex finite element model of the ship and the
surrounding fluid mesh, shown in Figure 14, the shock response velocity was calculated
for various locations throughout the ship using the modeling and simulation process

outlined in Figure 15 [4].

Figure 14. DDG 81 Coupled Fluid-Structure Model
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The results of this process were compared with the actual ship shock trial sensor

data obtained during the 2001 Live Fire Testing and Evaluation.

® Model
FEMAP Generation &
v Preprocessing
MSC/NASTRAN/PATRAN ®
v l v
TrueGrid® || FORTRAN
Simulation
) LS_D+YNA Processing
USA
 FLUMAS
TN |
| AUGMAT
.
_TIMINT i«
v
Ceetron GLview | PpostProcessing
MatLab® Data Processing
L7 & Comparison
UERDTools

Figure 15.  Model Generation and Simulation Flow Chart

Additionally the shock velocity response plots obtained from the aforementioned

process were compared against the earlier conducted simulations that used the Rayleigh

Damping Coefficients previously used in the DDG 53 modeling and simulation effort,

which occurred during the mid 1990’s at the Naval Postgraduate School. The values for

these coefficients are listed in Table 5.
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Table 5. Rayleigh Damping Coeftficient for 4% & 8% Proportional Damping

Damping Value o B
4% 2.64 4.99E-5
8% 4.93 9.89E-5

In this case the Rayleigh parameters (o, [}) were based on evaluation of the
damping values at two given points, 5 Hz and 250 Hz, which cover the range of data

which was required for subsequent comparisons.

RAYLEIGH DAMPIMNG

03} .
0.25 | == NPS Values (a0 = 19.2, = 2.09E-6) 7
4% Damping (o = 2.64, f = 4.99E-5) at 5 & 250 Hz
g 02f =—— 8% Damping (o= 4.93, p = 9.89E-5) 7
=
= o1s
0.1
0.05

1 1 1 1
0 a0 100 150 200 250 300
FREQUERNCY (Hz)

Figure 16. Rayleigh Damping Values (in Linear Scale)
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Figure 17. Rayleigh Damping Values (in Logarithmic Scale)

The following series of velocity response plots compares the Rayleigh damping
coefficients, o and [, presented in Tables 3 and 4 with coefficients that were used in

previous studies conducted on the DDG 53 and DDG 81, which appear in Table 5.

Russell’s Error Factor [5-7] was chosen as a means of comparing the velocity
response data against the actual ship shock trial data. For the purpose of this study, an
established set of acceptance criteria was taken from the work accomplished in 2003 on

the DDG 81 Ship Shock Simulation [4]. These values are presented in Table 6.

Table 6. Russell’s Correlation Acceptance Criteria
RC<0.15 Excellent
0.15<RC<0.28 Good
RC>0.28 Poor
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As the velocity response plot comparisons in Figure 18 through Figure 21 show,
there is a much better correlation between the NPS damping values and the ship shock
trial data, than with the fixed 4% damping. For the sensors examined of which the
approximate location of each is indicated on the time history plots by a red dot, a
Russell’s Comprehensive (RC) error correlation factor was computed. The mean RC for
the 4% Damping cases was 0.25 while in comparison when the new NPS damping values
from Table 3 and Table 4 were used, the mean RC value was only 0.18. Recalling that
by Russell’s correlation criteria, a value below 0.15 is considered an excellent
correlation, the simulations using the new NPS damping values consistently show better
overall correlation and an average reduction of approximately 25% in deviation from the
recorded ship shock trial data versus those using the fixed 4% damping. Table 7

illustrates a sampling of the supporting data.

Table 7. Comparison of Russell’s Error Factor for DDG 81Shot 2 (vertical direction)

Ship Shock Simulation with Shot 2 Geometry, Dense Mesh and 738 in Cavitation Depth
Shock Trial Data vs. 4% Damping | Shock Trial Data vs. NPS Damping
sensor | Node | Mounting Location (in)* SHIP SHOCK TRIAL DATA (<250HZ) | SHIP SHOCK TRIAL DATA (<250HZ)
Type LS-DYNA/USA DATA (<250HZ) LS-DYNA/USA DATA (<250HZ)
X y z RM RP RC RM RP RC
V2002V | 142489 | Deck 4656 24 85 0.1974 0.2715 0.2975 0.0679 0.2175 0.2019
V2008VI | 210894 | _Deck 4064 176 171 0.1207 0.2689 0.258 0.1200 0.1932 0.2016
V2035V | 330769 Keel 1152 135 193 0.1643 0.1849 0.2192 0.0009 0.1692 0.15
V2125V | 222436 | Bulkhead | 3504 375 390 0.1651 0.1936 0.2255 0.0214 0.1914 0.1707
Russell Error Correlation Sum(E(X))|_0.64750 | 0.91890 | 1.00020 | 0.21020 | 0.77130_| 0.72420
>0.28 [Poor Sum(E(X*2))] 010779 | 021769 | 025397 | 001947 | 0.14990 | 0.13304
<015 |Excellent Mean| 0.16188 | 0.22073 | 0.25005 | 0.05255 | 0.19283 | 0.18105
Standard Deviation| 0.03148 | 0.04688 | 0.03591 | 0.05299 | 0.01974 | 0.02535

* Referenced to the G&C NASTRAN Model coordinate origin located at the stern. In the Y-direction, port is postive from the centerline.

Figure 22 is a graphical representation of the data presented in Table 7. Notice
that the Russell’s Comprehensive correlation factor for the simulations using the NPS
damping values are all in the excellent or highly acceptable range, while the results from
the simulations performed using the fixed 4% damping values are only marginally
acceptable or fall outside of the acceptable range all together. Note as well that there is
considerable improvement in the accuracy of the magnitude component of the Russell’s
correlation in the simulations using the NPS damping values, as demonstrated by the

grouping of points nearer the ordinate.
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Figure 22.  Russell’s Error Factor for Selected Sensors of DDG 81 Shot 2

In this small but representative sampling of data points from various locations
throughout the ship, comparison of the Russell’s error correlation shows that using the
NPS damping values tends to improve the accuracy of the simulation from 20% to 30%.

These results are presented in Table 8.

Table 8. Relative % Change in RC for NPS Damping versus 4% Damping Case

Ship Percent
Sensor Node Compartment Relavtive
Location Change
V2008V 210894 4th Deck 32.13%
V2002V 142489 4th Deck 21.86%
V2035V 330769 3rd Deck 31.57%
V2125V 222436 1st Deck 24.30%
Averag_;e Improvement in Correlation 27.47%
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VI. CONCLUSIONS

Rayleigh damping representation for modeling ship system damping has been
investigated based on the ship shock trial data. Based on the results of studies, a set of
Rayleigh damping parameters (o« and () are recommended for ship shock response
predictions. The results of investigation also indicate that (i) the system damping is
largely affected by mass driven (o[M]), and (ii) the damping decreases as frequency

increases as we commonly understood.
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APPENDIX A. FIGURES
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Figure 44. Modal Damping Ratio at Area 18, Athwartship Direction (Modified)
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Figure 45. Modal Damping Ratio at Area 19, Athwartship Direction (Original)
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Figure 46. Modal Damping Ratio at Area 19, Athwartship Direction (Modified)
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Figure 50. Modal Damping Ratio at Area 28, Athwartship Direction (Modified)
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Figure 51. Modal Damping Ratio at Area 30, Athwartship Direction (Original)
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Figure 52.  Modal Damping Ratio at Area 30, Athwartship Direction (Modified)
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Figure 54. Modal Damping Ratio at Area 31, Athwartship Direction (Modified)
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Figure 55. Modal Damping Ratio at Area 32, Athwartship Direction (Original)
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Figure 62. Modal Damping Ratio at Area 37, Athwartship Direction (Modified)
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Figure 63. Modal Damping Ratio at Area 40, Athwartship Direction (Original)
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Figure 64. Modal Damping Ratio at Area 40, Athwartship Direction (Modified)
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Figure 66. Modal Damping Ratio at Area 41, Athwartship Direction (Modified)
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Figure 68. Modal Damping Ratio at Area 42, Athwartship Direction (Modified)
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Figure 70. Modal Damping Ratio at Area 43, Athwartship Direction (Modified)
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Figure 76. Modal Damping Ratio at Area 49, Athwartship Direction (Modified)
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Figure 86. Modal Damping Ratio at Area 56, Athwartship Direction (Modified)
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Figure 88. Modal Damping Ratio at Area 57, Athwartship Direction (Modified)
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Figure 90. Modal Damping Ratio at Area 58, Athwartship Direction (Modified)
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Figure 91. Modal Damping Ratio at Area 59, Athwartship Direction (Original)
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Figure 94. Modal Damping Ratio at Area 60, Athwartship Direction (Modified)
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Figure 95. Modal Damping Ratio at Area 61, Athwartship Direction (Original)
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Figure 96. Modal Damping Ratio at Area 61, Athwartship Direction (Modified)
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Figure 97. Modal Damping Ratio at Area 62, Athwartship Direction (Original)
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Figure 98. Modal Damping Ratio at Area 62, Athwartship Direction (Modified)
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Figure 100. Modal Damping Ratio at Area 64, Athwartship Direction (Modified)
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B. Results in the Vertical Direction
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Figure 106. Modal Damping Ratio at Area 1, Vertical Direction (Modified)
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Figure 112. Modal Damping Ratio at Area 5, Vertical Direction (Modified)
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Figure 114. Modal Damping Ratio at Area 6, Vertical Direction (Modified)
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Figure 116. Modal Damping Ratio at Area 7, Vertical Direction (Modified)
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Figure 117. Modal Damping Ratio at Area 8, Vertical Direction (Original)

Damping Ratio

09
08
o7
06|
05

044

0.3

024

0.1+

0.0

= Measured
Curvefit

. |' i".l-"'lﬂ'.-l'.'l;fIlI'I'u;-I'Ill
50 100 150 200
Frequency (Hz)

250

0.8+

08+

0.7 -

08+

054

0.4 4

034

024

014

a0

= Measured
- CurveFit

— Em
B S -I..I;fl--.-i-'lllﬁ

Damping Ratio

0.01 o

1E-3

= Measured
CurveFit

S0 100
Frequency (Hz)

150

(in Linear Scale)

200

250

10 100
Frequency (Hz)

(in Logarithmic Scale)

Figure 118. Modal Damping Ratio at Area 8, Vertical Direction (Modified)

Figure 119. Modal Damping Ratio at Area 9, Vertical Direction (Original)
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Figure 122. Modal Damping Ratio at Area 10, Vertical Direction (Modified)
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Figure 124. Modal Damping Ratio at Area 11, Vertical Direction (Modified)
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Figure 126. Modal Damping Ratio at Area 12, Vertical Direction (Modified)
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Figure 128. Modal Damping Ratio at Area 13, Vertical Direction (Modified)
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Figure 132. Modal Damping Ratio at Area 15, Vertical Direction (Modified)
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Figure 133. Modal Damping Ratio at Area 16, Vertical Direction (Original)
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Figure 134. Modal Damping Ratio at Area 16, Vertical Direction (Modified)
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Figure 138. Modal Damping Ratio at Area 18, Vertical Direction (Modified)
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Figure 140. Modal Damping Ratio at Area 19, Vertical Direction (Modified)
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Figure 142. Modal Damping Ratio at Area 20, Vertical Direction (Modified)
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Figure 143. Modal Damping Ratio at Area 21, Vertical Direction (Original)
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Figure 146. Modal Damping Ratio at Area 22, Vertical Direction (Modified)
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Figure 148. Modal Damping Ratio at Area 23, Vertical Direction (Modified)
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Figure 149. Modal Damping Ratio at Area 24, Vertical Direction (Original)
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Figure 150. Modal Damping Ratio at Area 24, Vertical Direction (Modified)
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Figure 152. Modal Damping Ratio at Area 25, Vertical Direction (Modified)
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Figure 153. Modal Damping Ratio at Area 26, Vertical Direction (Original)
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Figure 154. Modal Damping Ratio at Area 26, Vertical Direction (Modified)
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Figure 156. Modal Damping Ratio at Area 27, Vertical Direction (Modified)
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Figure 158. Modal Damping Ratio at Area 28, Vertical Direction (Modified)
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Figure 161. Modal Damping Ratio at Area 30, Vertical Direction (Original)
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Figure 162. Modal Damping Ratio at Area 30, Vertical Direction (Modified)
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Figure 164. Modal Damping Ratio at Area 31, Vertical Direction (Modified)
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Figure 166. Modal Damping Ratio at Area 32, Vertical Direction (Modified)
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06+

054

04|

Damping Ratio

03-0%
0.2

0.1+

0.0
o

Figure 169.

50

09+
08+
07+
06+
054
044
03y
02+

014

Frequency (Hz)

(in Linear Scale)

®  Measured
CurveFit

PR L S I WA TR

100

Frequency (Hz)

150

Damping Ratio

= Measured
Curvefit

4 " .‘;ht.!.l!ﬂﬂ‘l!-‘h! Pl od

200

250

Modal Damping Ratio at Area 34, Vertical Direction (Original)

.
- b ]
0.1 .
. "
L EL
- " . "
- L L]
J:-,l.. 3
0.01 o LY ;}.'
- .j.
= Measured "
CurveFit
1E3

T T

10
Frequency (Hz)

(in Logarithmic Scale)

Figure 170. Modal Damping Ratio at Area 34, Vertical Direction (Modified)
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Figure 179. Modal Damping Ratio at Area 39, Vertical Direction (Original)
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Figure 180. Modal Damping Ratio at Area 39, Vertical Direction (Modified)
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Figure 182. Modal Damping Ratio at Area 40, Vertical Direction (Modified)
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Figure 184. Modal Damping Ratio at Area 41, Vertical Direction (Modified)
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Figure 185. Modal Damping Ratio at Area 42, Vertical Direction (Original)
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Figure 186. Modal Damping Ratio at Area 42, Vertical Direction (Modified)
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Figure 188. Modal Damping Ratio at Area 43, Vertical Direction (Modified)
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Figure 190. Modal Damping Ratio at Area 44, Vertical Direction (Modified)
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Figure 191. Modal Damping Ratio at Area 45, Vertical Direction (Original)
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Figure 192. Modal Damping Ratio at Area 45, Vertical Direction (Modified)
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Figure 193. Modal Damping Ratio at Area 46, Vertical Direction (Original)
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Figure 194. Modal Damping Ratio at Area 46, Vertical Direction (Modified)
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Figure 196. Modal Damping Ratio at Area 47, Vertical Direction (Modified)
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Figure 197. Modal Damping Ratio at Area 48, Vertical Direction (Original)
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Figure 198. Modal Damping Ratio at Area 48, Vertical Direction (Modified)
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Figure 199. Modal Damping Ratio at Area 49, Vertical Direction (Original)
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Figure 200. Modal Damping Ratio at Area 49, Vertical Direction (Modified)
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Figure 202. Modal Damping Ratio at Area 50, Vertical Direction (Modified)
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Figure 206. Modal Damping Ratio at Area 52, Vertical Direction (Modified)
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Figure 208. Modal Damping Ratio at Area 53, Vertical Direction (Modified)
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Figure 209. Modal Damping Ratio at Area 54, Vertical Direction (Original)
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Figure 210. Modal Damping Ratio at Area 54, Vertical Direction (Modified)
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Figure 211. Modal Damping Ratio at Area 55, Vertical Direction (Original)
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Figure 212. Modal Damping Ratio at Area 55, Vertical Direction (Modified)
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Figure 214. Modal Damping Ratio at Area 56, Vertical Direction (Modified)
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APPENDIX B. MODAL PARAMETER EXTRACTION PROGRAM LIST IN
TIME DOMAIN

This program uses IMSL libraries that are included in Microsoft Power Station.

use msimslmd
implicit double precision (a-h, o-z)
dimension tt (4000), wvv(4000), hh(4000,200), hh2n(4000), betag(201l), coeff(201), &
coefre (0:201), coefim(0:201), rootre(200), rootim(200)
dimension hht (200, 4000) ,hhthh (200, 200) , hht2n (200)
double complex root (200), freg(6000), vvregm(6000)
dimension xr(200), wr(200), vvregr (4000), vvregi (4000)
dimension arn(200), nong(1000)
double complex aaa(4000,200),aaat (200,4000),ah (4000),aaatah(200), &
aaataaa (200,200), cmodal (201),sr(201),cw
character*25 ifiles(1000),pfiles(1000), gfiles(1000),sensor (1000), sensorid
LOGICAL COMPL
pi=4.0d0*datan (1.0d0)
tfinal=2000.0d0

nf=773 ! no. of data sets 774
! ng=170 ! total mode no. to be considered
open (unit=1, file='modifieddat.lst') ! input time data file list

do 1881 ifl=1,nf
read(l,*) sensor(ifl), nong(ifl)
ifiles (ifl)=trim(sensor(ifl))//' 2ms.dat'
pfiles (ifl)=trim(sensor (ifl))//' modal. .dat"
gfiles(ifl)=trim(sensor(ifl))//' regen.dat'
1881 continue
do 8888 ifl=467,nf
mm=1500 ! data points to be used for calculation
ng=nonq (1f1)
write(*,*) ifl,' -—> ', ifiles(ifl)
open (unit=3, file=ifiles(ifl), err=8888)
open (unit=4, file=pfiles(ifl))
open (unit=6, file=gfiles(ifl))
|
! Velocity Data input, time is in miliseconds.
|
do j=1,mm
read(3,*) tt(j), vw(j)
if(tt(j) .ge.tfinal) goto 1788
enddo
1788 mm=j -1

dt=(tt (mm) - ) /dfloat (mm-1) /1000.0d0 ! time interval in seconds
write(*,*) dt

Calculate [H] {betal}={h}

m2=nm-ng-1
do i=1,m2
ii=i-1
hh2n(i)= -vv(ii+ngtl)
do j=1,ng
hh (i,3)=vv (ii+])
enddo
enddo
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hht (1:nqg, 1:m2)=transpose (hh (1:m2,1:nq))
hhthh (1:ng, 1:ng)=matmul (hht (1:nqg,1:m2),hh(1:m2,1:nqg))
hht2n (1 :ng)=matmul (hht (1:nqg, 1:m2),hh2n(1:m2))

CALL DLSARG (ng, hhthh, 200, hht2n, 1, betaq)

! Solve Polynomial Equation, and calculate {V}

betaq(ng+l)=1.0d0

compl=.FALSE.

coefre (0:nqg)=betag (1l :ng+l)

CALL BAUPOL (coefre, coefim, nq, COMPL, ROOTRE, ROOTIM, NUMIT)
root (1:ng)=dcmplx (rootre (l:nqg), rootim(l:nqg))

! Calculate modal frauencies and damping ratios from {V}
do i=1,ngq
sr (1)=cdlog (root (1)) /dt
wr (1) =cdabs (sr(i))
xr(i)= -dble(sr(i)) /wr (i)
enddo
! Calculate modal constants {Ar}

cmodal=dcmplx (0.0d0, 0.0d0)

m2=mm-1
do i=1,m2
ah(i)=vv (i)
do j=1,nqg
aaa (i, J)=root (j) **dfloat (i-1)
enddo

enddo
aaat (1:ng,1:m2)=transpose (aaa(1l:m2,1:nq))
aaataaa(l:nqg, l:ng)=matmul (aaat (l:nqg, 1:m2),aaa(l:m2,1:nq))
aaatah (1:nqg)=matmul (aaat (1:nqg,l:m2),ah(l:m2))

CALL DLSACG (ng, aaataaa, 200, aaatah, 1, cmodal)

sensorid=sensor (1fl)
do i=1,ng
cmodal (1) =cmodal (1) /sr (1)
enddo

armax=0.0d0
arn=0.0d0
do i=1,ng
if (cdabs (cmodal (1)) .gt.armax) armax=cdabs (cmodal (1))
enddo
arn (1:nq)=cdabs (cmodal (1:nq) ) /armax

! Calculate Spectrum using modal parameter to verify results

fspan=1.0d0/dt/2.0d0
wspan=2 . 0d0*pi*fspan
dw=wspan/ (dfloat (mm/2) -1.0d0)
freg=dcmplx (0.0d0, 0.0d0)
do i=2,mm/2+1
w=dfloat (i-1) *dw
cw=dcmplx (0.0d0, w)
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do j=1,ngq
freg(i)=freg (i) +cmodal (j) *cw/ (cw—sr (J))
enddo
enddo
do i=2, mm/2
1i=mm-1+2
freg(ii)=dconjg(freg(i))
enddo
freg=freg*dw/ (2.0d0*pi)

! Calculate synthesized time history by inverse FFT

CALL DFFICB (mm, freg, wvvregm)
vvregr=0.0
do i=2,mm
ii=mm-i+1
vvregr (i) =dble (vvregm(i))
vvregi (i) =dimag (vvregm(i))
enddo

! Output synthesized time histories

do i=2,mm/2
write (6,200) tt(i), vvregr(i),vvregi (i), vv(i)
200 format (5(1x,e15.7))
enddo

! Sort and Output all modal parameters

call sortmodal (ng, wr, xr, cmodal, arn)

do i=1,ng
write(4,100) i, wr(i)/(2.0d0*pi), xr(i), cmodal (i), arn(i)
100 format (115, 5(1x, €14.6))
enddo

close (unit=3)
close (unit=4)
close (unit=6)
8888 continue
877 format (5(1x,el15.7))
400 format (5(1x,el15.7))
close (unit=1)
close (unit=2)
close (unit=5)
stop
end

|
!
! Subroutine to calculate damping curve and standard deviation
|
|

Subroutine meansd(nto, totalfreq, totaldamp, rayleigh, raywgt, &
ffreq, fdampl, fdamp2, sdray, sdwgt)
implicit double precision (a-h,o-z)
dimension totalfreq(2000), totaldamp (2000), ffreq(250), fdampl (250), &
fdamp2 (250)
dimension rayleigh(2), raywgt(2)
pi=4.0d0*datan (1.0d0)
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sdray=0.0d0
sdwgt=0.0d0
do i=1,nto
w=2.0d0*pi*totalfreq(i)
x=rayleigh (1) /2.0d0/wt+rayleigh (2) /2.0d0*w
sdray=sdray+ (totaldamp (i) -x) **2.0d0
x=raywgt (1) /2.0d0/w+raywgt (2) /2.0d0*w
sdwgt=sdwgt+ (totaldamp (i) —x) **2.0d0
enddo
sdray=sdray/nto
sdwgt=sdwgt/nto
do i=1,250
f=dfloat (i)
ffreq(i)=£f
w=2.0d0*pi*f
fdampl (i) =rayleigh (1) /2.0d0/w+rayleigh (2) /2.0d0*w
fdamp2 (i) =raywgt (1) /2.0d0/w+raywgt (2) /2.0d0*w
enddo
return
end

!
!
! Sort total
|
|

subroutine sorttotal (itt, ffreq, ddamp, ar)
implicit double precision (a-h,o-z)
dimension ffreq(2000), ddamp(2000) , ar(2000)
ntt=itt
do i=1,ntt-1
do j=i+l, ntt
if (ffreq(i) .gt.ffreq(j)) then
ddum=ffreq (i)
ffreq(i)=ffreq(j)
ffreq(j)=ddum

ddunm=ddanp (1)
ddamp (1) =ddamp (3)
ddamp (J) =ddum
ddurm=ar (i)
ar (1)=ar(j)
ar (j)=ddum
endif
enddo

enddo

return

end

subroutine sortmodal (ng, wr, xr, cmodal, arn)

|
!
implicit double precision (a-h,o-z)
dimension wr (2000), xr(2000) , arn(2000)
double complex cmodal (2000), cdum
do i=1,ng-1
do j=i+l, ng
if (wr (i) .gt.wr(j)) then
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ddum=wr (1)
wr (1) =wr (J)
wr (J) =ddum
ddurm=xr (1)
xXr (1)=xr (j)
Xr () =ddum
ddum=arn (1)
arn (i)=arn(Jj)
arn (j)=ddum
cdum=cmodal (i)
cmodal (i) =cmodal (j)
cmodal (3) =cdum
endif
enddo

enddo

return

end

|

|

subroutine FindAr (ng,mm,dt,vv, sr, cmodal)
|

! to find modal constants with frequency domain least square method
implicit double precision (a-h,o-z)
dimension vv(2000)
double complex sr (201),cmodal (201),t (2000),ss(2000,200), &
st (200, 2000) , stf (200) ,sts (200,200), ££(2000) ,wi
pi=4.0d0*datan (1.0d0)

do i=1,mm

t (1)=dcmplx (vv (i), 0.0d0)
enddo
CALL DFFICF (mm, t, ff)
m=mm/ 2

df=1.0d0/ (dt*dfloat (mm-1))
dw=2.0d0*pi*df
£f (1:mm)=£ff (1:mm) /dfloat (mm)
do i=1,m+1
w=dfloat (i-1) *dw
wi=dcmplx (0.0d0, w)
do j=1,ng
ss(i,])=wi/ (wi-sr(j))*df
enddo
enddo
do i=mm,m+2,-1
w= dfloat (mm—i+1) *dw
wi=dcmplx (0.0d0, —w)
do j=1,ngq
ss(i,])=wi/ (wi-sr(j))*df
enddo
enddo
st (1:nqg, 1:mm)=transpose (ss(l:mm,1:nqg))
stf (1l:ng)=matmul (st (1:ng,1:mm), £f(1l:mm))
sts(l:ng,l:ng)=matmul (st (1:ng,1:mm),ss(l:mm,1l:nq))
CALL DLSACG (ng, sts, 100, stf, 1, cmodal)
return
end
|
|

122



SUBROUTINE BAUPOL (COEFRE, COEFIM, N, COMPL, ROOTRE, ROOTIM, NUMIT)

|C*****************************************************************

IC *
!C Without knowing any approximations of the roots, this *
!C SUBROUTINE finds N approximate values Z(I), I=1, ..., N for *
!C the N zeros of a polynomial PN of degree N with real or *
!C complex coefficients. *
!C The polynomial is described as follows: *
IC *
IC PN (Z) =COEF (0) +COEF (1) *Z+COEF (2) *Z**2+. . . +COEF (N) *Z**N, *
IC *
!C  with COEF(I) = (COEFRE(I),COEFIM(I)) for I=0, ..., N (complex *
!C coefficients). *
IC *
!C INPUT PARAMETERS: *
IC *
!C COEFRE : (N+1) —vector COEFRE (0:N) containing the real *
IC part of each coefficient of the polynomial PN in  *
IC DOUBLE PRECISION. *
!C COEFIM : (N+l)-vector COEFIM(0:N) containing the imaginary *
IC part of each coefficient of the polynomial PN in  *
IC DOUBLE PRECTISION. *
IC N : degree of the polynomial PN. *
!C COMPL : boolean variable : *
IC COMPL=.TRUE. , if the coefficients are COMPLEX. *
IC COMPL~=.FALSE. , if the coefficients are REAL. *
IC *
!C OUTPUT PARAMETERS: *
IC *
!C  ROOTRE : N-vector ROOTRE (1:N) containing the approximate *
IC real parts of the computed zeros of PN in *
IC DOUBLE PRECISION. *
!C ROOTIM : N-vector ROOTIM(1:N) containing the approximate *
IC imaginary parts of the computed zeros of PN in *
IC DOUBLE PRECTISICON. *
!C  NUMIT : maximum number of iteration steps. *
IC *

!
IMPLICIT DOUBLE PRECISION (a—h,o-z)
DIMENSION COEFRE (0:201),CCOEFIM(0:201) ,E(201), &
ROOTRE (200) , ROOTIM (200) , A (500) ,B(500) ,C(500)
DOUBLE PRECISION INFINY, MAX, MIN
LOGICAL COMPL

Initializing the iteration step counter NUMIT and the error
bound GAMVA.

NUMIT=0
GAMMA=5.0D-18
IF(N .EQ. 1) THEN

If the degree of PN is N=1, then the zero of the polyncmial PN is
Z=-COEF (0) /COEF (1), where COEF (I)=(CCEFRE (I),COEFIM(I)) for I=0,1.

CALL CDIV (-COEFRE (0),-COEFIM(0),COEFRE (1),COEFIM(1), &
ROOTRE (1) , ROOTIM (1))
RETURN
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ELSE
NI=N+1

! Scaling via SCALFC.

DO 10 I=1,N1
E (I)=ABSCOM (COEFRE (N1-I) , COEFIM (N1-I))
10  CONTINUE
CALIL MCONST (FMACHP, INFINY, SMAINO, BASE)
BND=SCALFC (N1, E, EMACHP, INFINY, SMAINO, BASE)
IF(BND .EQ. 1.0D0) THEN

Normalizing, in case scaling by SCALFC did not normalize the coefficients.

MAX=0.0D0
MIN=1.0D+300
DO 20 I=N,0,-1
X=ABSCOM (COEFRE (I) , COEFIM (I))
IF (X .GT. MAX) MAX=X
IF(X .LT. MIN .AND. X .NE. 0.0D0) MIN=X
20 CONTINUE
BND=DSQRT (MAX*MIN)
BND=1.0D0/BND
END IF
DO 30 K=1,N1
B (2*K-1) =COEFRE (N1-K) *BND
B (2*K)=0.0D0
IF (COMPL) B (2*K)=COEFIM (N1-K) *BND
30  CONTINUE
X0=0.0D0
Y0=0.0D0
DO 40 I=1,N
L=2% (N+2-1)
DO 50 K=1,L
A(K)=B(K)
50 CONTINUE

! Calculating the I-th zero of PN.
|

CALL BAUZRO (X0, Y0, N+1-TI, GAMMA, XNEW, YNEW, NUMIT, A, B, C)
ROOTRE (I) =XNEW
ROOTIM (I)=YNEW
XO=XNEW
YO=—YNEW
40  CONTINUE

END IF

RETURN

END

SUBROUTINE BAUZRO (X0, YO, N, GAMMA, XNEW, YNEW, NUMIT, A, B, C)
I
! KAk hkhkhkhkhkhkhkhkkhkkhkhkhkhkhhhhkhkhhhhhkhkhkhkrhhhhhhhkhkhkhkhkhkhkhhhhhhhkkhkkhkkhkhkhkhkrrrrrrkkkx
! *
! This SUBROUTINE calculates a zero of a polyncmial PN with
! complex coefficients.
! We solve the equation PN(Z)/PN' (Z)=0
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! via Newton's method with spiralization and extrapolation to  *
! improve convergence. *
! The initial approximation (X0+I*Y0) can be chosen arbitrarily.*
| *
! INPUT PARAMETERS: *
! *
! X0 : real part of the initial approximation. *
! YO : imaginary part of the initial approximation. *
' N : degree of the polynomial PN. *
! GAMMA ¢ error bound. *
! *
! OUTPUT PARAMETERS: *
| *
! XNEW : real part of the computed zero of PN. *
! YNEW : imaginary part of the zero of PN. *
! NUMIT : maximum number of iteration steps. *
| *
|

|

IMPLICIT DOUBLE PRECISION (a—-h,o-z)
DIMENSION A (500),B(500),C(500)
LOGICAL ENDIT

IF(N .EQ. 2) THEN
! Solving the remaining 2nd degree polynomial exactly.

CALL CDIV(A(3),A(4),A(1),A(2),PlRE,P1IM)
CALL CDIV(A(5),A(6),A(1),A(2),QlRE,QLIM)
P12RE=-P1RE/2.0D0
P12IM=-P1IM/2.0D0
RA1RE=P12RE*P12RE-P12IM*P12IM
RA1IM=2.0D0*P12RE*P12IM
RARE=RA1RE-Q1RE
RATM=RA1IM-Q1IM
IF(RAIM .EQ. 0.0D0) THEN

IF(RARE .LT. 0.0D0) THEN

! Purely imaginary root.

RTIM=DSCRT (-RARE)
RTRE=0.0D0
XNEW=P12RE
YNEW=P12IM+RTIM
RETURN

ELSE

! Real root.

RTRE=DSORT (RARE)
RTIM=0.0D0
XNEW=P12RE+RTRE
YNEW=P12IM
RETURN
END IF
ELSE
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! Complex root.
|
RABE=ABSCOM (RARE, RATM)
IF(RARE .GT. 0.0D0) THEN
RTRE=DSORT (0.5D0* (RABE+RARE) )
IF(RAIM .LT. 0.0D0) RTRE=-RTRE
RTIM=0.5D0*RAIM/RIRE
ELSE
RTIM=DSORT (0.5D0* (RABE-RARE) )
RTRE=0.5D0*RAIM/RTIM
END IF
XNEW=P12RE+RTRE
YNEW=P12IM+RTIM
RETURN
END IF
ELSE IF(N .EQ. 1) THEN
|
! Polynomial of lst degree.
|
XNEW=P12RE-RTRE
YNEW=P12IM-RTIM
RETURN
ELSE
I=0
ENDIT=.FALSE.
RHO=DSORT (GAMMA)
BETA=10.0D0*GAMA
QR=0.1D0
QI=0.9D0
XNEW=X0
YNEW=YO0
CALL COMHOR (XNEW, YNEW, N, GAMVA, UNEW, VNEW, UDNEW, VDNEW, &
UDDNEW, VDDNEW, BD, BDD, A, B, C)
NUMIT=NUMIT+1
PENEW=ABSCOM (UNEW, VNEW)
IF(PBNEW .LE. BD) THEN
RETURN
ELSE
PBOLD=2 . 0ODO*PBNEW
DZMIN=BETA* (RHO+ABSCOM (XNEW, YNEW) )
10 PSENEW=ABSCOM (UDNEW, VDNEW)

! Spiralization.

IF (PBNEW .LT. PBOLD) THEN
DZMAX=1 . 0DO+ABSCOM (XNEW, YNEW)
NUMIT=NUMIT+1
H1=UDNEW*UDNEW-VDNEW*VDNEW-UNEW*UDDNEW+VNEW*VDDNEW
H2=2 . 0DO*UDNEW*VDNEW-UNEW*VDDNEW—VNEW*UDDNEW
IF(PSBNEW .GT. 10.0DO*BDD .AND. &
ABSCOM (H1,H2) .GT. 100.0DO*BDD*BDD) THEN

! RApplying Newton's method.

I=T+1
IF(I .GT. 2) I=2
U=UNEW*UDNEW-VNEW*VDNER
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V=UNEW*VDNEW+VNEW*UDNEW
CALL CDIV(-U,-V,H1,H2,DX,DY)
IF (ABSCOM(DX,DY) .GT. DZMAX) THEN
H=DZMAX/RABSCOM (DX, DY)
DX=DX*H
DY=DY*H
=0
END IF
IF(I .EQ. 2 .AND. ABSCOM(DX,DY) .LT. DZMIN/RHO .AND. &
ABSCOM (DX, DY) .GT. 0.0DO) THEN
!
! Extrapolation.
|
I=0
CALL CDIV (XNEW-XOLD, YNEW-YOLD, DX, DY, H3, H4)
H3=1.0D0+H3
H1=H3*H3-H4*H4
H2=2.0DO*H3*H4
CALL CDIV (DX, DY,H1,H2,H3,H4)
IF (ABSCOM (H3,H4) .LT. 50.0D0*DZMIN) THEN
DX=DX+H3
DY=DY+H4
END IF
END IF
XOLD=XNEW
YOLD=YNEW
PBOLD=PBNEW
ELSE
|
! In a neighborhood of a saddle point.
!
I=0
H=DZMAX/PBNEW
DX=H*UNEW
DY=H*VNEW
XOLD=XNEW
YOLD=YNEW
PBOLD=PBNEW
20 CALL COMHOR (XNEW+DX, YNEW+DY, N, GAMMA, U, V, H,H1, &
H2,H3,H4,H5,4,B,C)
IF (DABS (ABSCOM (U, V) /PBNEW-1.0D0) .LE. RHO) THEN
DX=2.0D0*DX
DY=2.0D0*DY
GOTO 20
END IF
END IF
ELSE
I=0
NUMIT=NUMIT+1
H=QR*DX-QI*DY
DY=0OR*DY+QI*DX
DX=H
END IF
IF (ENDIT) THEN
IF (ABSCCM (DX, DY) .LT. 0.1DO*BDZE) THEN
XNEW=XNEW+DX
YNEW=YNEW-+DY
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END IF
CALI, COMHOR (XNEW, YNEW, N, GAMMA, UNEW, VNEW, UDNEW, &
VDNEW, UDDNEW, VDDNEW, BD, BDD, A, B, C)
RETURN
FLSE
XNEW=XOLD+DX
YNEW=YOLD+DY
DZMIN=BETA* (RHO+ABSCOM (XNEW, YNEW) )
CALIL COMHOR (XNEW, YNEW, N, GAMMA, UNEW, VNEW, UDNEW, &
VDNEW, UDDNEW, VDDNEW, BD, BDD, A, B, C)
PBNEW=ABSCOM (UNEW, VNEW)
IF (PBNEW .EQ. 0.0D0) THEN
RETURN
ELSE IF(ABSCOM(DX,DY) .GT. DZMIN .AND. &
PBNEW .GT. BD) THEN
GOTO 10
ELSE
ENDIT=.TRUE.
BDZE=ABSCOM (DX, DY)
GOTO 10
END IF
END IF
END IF
END IF
END

SUBROUTINE COMHCR(X,Y,N,GAMVA,U,V,UD,VD,UDD, VDD, BDP, BDPD, A, B, C)
!

!*‘k‘k‘k***‘k‘k****************************‘k*****‘k********************
! *
! This SUBROUTINE calculates the complex functional value *
! PN (X+I*Y)=(U+I*V), the complex valued derivatives *
! PN' (X+I*Y)=(UD+I*VD) and PN'' (X+I*Y)=(UDD+I*VDD) of a polymial*
! PN(Z) of degree N (N>0) with complex coefficients by using
! the Horner-scheme.

! Additionally bounds BDP and BDPD are computed for the

! rounding errors in computing DABS (PN (Z)) and DABS (PN' (Z)) .
! The complex coefficients of PN are stored in a 2-dimensional
! array A(1:2* (N+1)), arranged in descending order of the
! powers (they will remain unchanged by this subroutine) .
! The complex coefficients of the polynomial Q(Z) of degree N-1
! are stored in the array B(1:2* (N+1)), arranged in descending
! order. Here Q(Z) is defined by PN(Z)=Q(Z)* (Z-Z0)+PN (Z0) .
! The array C(1:2*N) is used as an auxiliary array.

|

|

|

|

I

I

|

|

|

I

|

! INPUT PARAMETERS:

' X : real part of the value for which the functional
value and its 1st and 2nd derivatives are to be
computed for the polynomial PN.

'y : imaginary part of the value for which the
functional value and its 1lst and 2nd derivatives

! are to be computed for the polynomial PN.

! GAMMA : error bound.

b S T S . S S N S . S N S S S T
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OUTPUT PARAMETERS:

9] : real part of PN(X+I*Y).

v : imaginary part of PN (X+I*Y).

UD : real part of PN' (X+I*Y).

VD : imaginary part of PN' (X+I*Y).

UDD : real part of PN'' (X+I*Y).

VDD : imaginary part of PN'' (X+I*Y).

BDP : bound for the rounding error of DABS (PN (Z)) .
BDPD : bound for the rounding error of DABS (PN' (Z)).

IMPLICIT DOUBLE PRECISION (a-h,o-z)
DIMENSION A (500),B(500),C(500)
C(1)=A(1)
B(1)=A(1)
C(2)=A(2)
B(2)=A(2)
BDPD=ABSCOM (A (1) ,A(2) )
BDP=BDPD
MS=N-1
M=N
J=N
NM2P1=N*2+1
DO 10 K=3,NM2P1,2
J=J-1
H1=X*B (K-2) -Y*B (K-1)
H2=Y*B (K-2) +X*B (K-1)
B (K) =A (K) +H1
B (K+1)=A (K+1) +H2
H3=ABSCOM (A (K) , A (K+1))
H4=ABSCOM (H1, H2)
H=H3
IF(H3 .LT. H4) H=H4
IF(H .GT. BDP) THEN
BDP=H
M=J
END IF
IF(K .EQ. NM2P1) THEN
GOTO 20
ELSE
HI=X*C (K-2) =Y*C (K-1)
H2=Y*C (K-2) +X*C (K-1)
C (K) =B (K) +H1
C (K+1)=B (K+1) +H2
H3=ABSCOM (B (K) , B (K+1) )
HA=ABSCOM (H1, H2)
H=H3
IF(H3 .LT. H4) H=H4
IF(BDPD .LT. H) THEN
BDPD=H
MS=J-1
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END IF
END IF

10 CONTINUE

20 CONTINUE

U=B (2*N+1)

V=B (2*N+2)

UD=C (2*N-1)

VD=C (2*N)

H=ABSCOM (X, Y)

IF(H .NE. 0.0D0) THEN
BDP=BDP*FLOAT (M+1) *H**M
BDPD=BDPD*FLOAT (MS+1) *H**MS

ELSE
BDP=ABSCOM (U, V)
BDPD=ABSCOM (UD, VD)

END IF

BDP=BDP*GAMVA

BDPD=BDPD*GAMVA

IF(N .GT. 1) THEN
H1=C (1)

H2=C (2)

NM2M3=N*2-3

DO 30 K=3,NV2M3, 2
H=C (K) +X*H1-Y*H2
H2=C (K+1) +Y*H1+X*H2
H1=H

30  CONTINUE

UDD=2.0D0O*H1

VDD=2.0DO*H2

RETURN

ELSE
UDD=0.0D0
VDD=0.0D0
RETURN

END IF

END

DOUBLE: PRECISICN FUNCTION ABSCOM(X,Y)
!

| khkkkhhhkhhkkhkhhhkhhkhkhhkhkhhkhhhkhhkhhhkhhkhrhkhhkhhhkhhkhrhkhhkhhkhhkkhrkkhkrx

! This FUNCTION-subroutine calculates the absolute value of a
! complex number (X+I*Y).

! INPUT PARAMETERS:

|
|
|
|
|
|
' X : real part of the complex number.

'y : imaginary part of the complex number.
|

|

|

|

|

I

! OUTPUT PARAMETER:

! ABSCOM  : absolute value of the complex number.

b S R S . S S S R S
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IMPLICIT DOUBLE PRECISION (a-h,o-z)
IF(X .NE. 0.0D0 .OR. Y .NE. 0.0D0) THEN
IF(DABS (X) .GE. DABS(Y)) THEN
ABSCOM=DABS (X) *DSORT (Y/X*Y/X+1.0D0)
RETURN
ELSE
ABSCOM=DABS (Y) *DSORT (X/Y*X/Y+1.0D0)
RETURN
END IF
ELSE
ABSCOM=0.0D0
RETURN
END IF
END

SUBROUTINE MCONST (FMACHP, INFINY, SMATINO, BASE)
!

| Ahkkkhkhkhkhkhhkhkhkhhkhhkhkhhhkhhkhkhhhkhhkhkhhhkhhhkhrhkhhkhhhkhhkkhrkhkhhkhhkhkkhrkkhxx

! This subroutine sets up some constants that are machine
! dependent.

! OUTPUT PARAMETERS:

! FMACHP : machine constant for DOUBLE PRECISION.

! INFINY : largest representable floating-point number.
! SMAINO : smallest representable floating-point number.
! BASE : base of the floating-point number system used to

! Description of the auxiliary variables:

I : number of digits of the floating-point mantissa
of DOUBLE PRECISION numbers.

' M : largest allowed exponent.

' N : smallest allowed exponent.

|
|
|
!
!
|
|
|
!
!
! represent machine numbers.
|
|
!
!
|
|
|
!
!
|

IMPLICIT DOUBLE PRECISION (a-h,o-z)
DOUBLE PRECISION INFINY

BASE=8.0D0
1=29
M=322
N=-293
FMACHP=1. 0D0

10 FMACHP=0.5D0*FMACHP
IF(1.0D0 .LT. 1.0DO+FMACHP) GOTO 10
FMACHP=2 . 0DO*FMACHP
INFINY=BASE* (1.0D0-BASE** (-I) ) *BASE** (M-1)
SMALNO= (BASE** (N+3) ) /BASE**3
RETURN
END

131

o S R . S . S S S e S R S S



DOUBLE PRECISICON FUNCTION SCALFC (NN, PT, FMACHP, INFINY, SMAINO, &

BASE)
!

| khkkkhkhkhhkhkhkhkhkhkhkhhkhkhhhkhhkhkhhhkhhkhkhhhkhhkhkhrhkhhkkhhhhhkkhrhkhhkkhhkhhkkhrkhkkxk

! This FUNCTION-subroutine calculates a scaling factor which
! is used to scale the polynomial coefficients.

! INPUT PARAMETERS:

! NN : 1 + the degree of the polynomial.

!PT : nn—vector PT(1:NN) containing the absolute

! values of the polynomial's coefficients.

! FMACHP : machine constant for DOUBLE PRECISICN.

! SMAINO : smallest representable floating—point number.

! BASE : base for the floating-point number system used by

the machine.

! OUTPUT PARAMETER:

! SCALFC : scaling factor.

b S N S S S . S S e S S S S .

|
|
|
!
|
|
|
|
!
|
! INFINY : largest representable floating-point number.
|
|
!
|
|
|
|
!
|
|

IMPLICIT DOUBLE PRECISION (a—h,o-z)
DIMENSION PT (NN)
DOUBLE: PRECISION MAX, MIN , INF'INY
HI=DSQORT (INEFINY)
LO=SMALNO/FMACHP
MAX=0.0D0
MIN=INFINY
DO 10 I=1,NN
X=PT (I)
IF(X .GT. MAX) MAX=X
IF(X .NE. 0.0DO .AND. X .LT. MIN) MIN=X
10 CONTINUE
SCALFC=1.0D0
IF(MIN .GE. LO .AND. MAX .ILE. HI) THEN
RETURN
ELSE
X=LO/MIN
IF(X .GT. 1.0D0) THEN
SC=X
IF(INFINY/SC .GT. MAX) SC=1.0D0
ELSE
SC=1.0D0/ (DSQRT (MAX) *DSQRT (MIN) )
END IF
1~=DLOG (SC) /DLOG (BASE) +0 . 5D0
SCALFC=BASE**L
END IF
RETURN
END
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SUBRCUTINE CDIV (A,B,C,D,X,Y)
|
!*****************************************************************
!

! This SUBROUTINE performs a complex division
(X+I*Y) := (A+I*B)/(C+I*D).

! INPUT PARAMETERS:

A : real part of the numerator.
!'B : imaginary part of the numerator.
' C : real part of the denominator.
D : imaginary part of the denominator.

OUTPUT PARAMETERS:

X : real part of the quotient.
Y : imaginary part of the quotient.

NOTE: If the denominator's real and imaginary parts are both
equal to zero, the program is aborted with a detailed
error message.

b T e S S . I S S S e S S S S
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!
IMPLICIT DOUBLE PRECISION (a-h,o-z)
IF(C .NE. 0.0D0 .OR. D .NE. 0.0D0) THEN
IF(A .NE. 0.0D0O .CR. B .NE. 0.0DO) THEN
IF (DABS (A) .GT. DABS(B)) THEN

U=A
AM=1.0D0
AN=B/A
ELSE
U=B
AVEA/B
AN=1.0D0
END IF
IF(DABS (C) .GT. DABS(D)) THEN
V=C
P=1.0D0
Q=D/C
ELSE
V=D
P=C/D
0=1.0D0
END IF
F=U/V
V=P*P+Q*Q
U= (AM*P+AN*Q) /V
X=U*F
U= (—AM*Q+AN*P) /V
Y=U*F
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RETURN
ELSE
X=0.0D0
Y=0.0D0
RETURN
END IF
ELSE
WRITE (*,*) 'DIVISION BY ZERO IN SUBROUTINE CDIV'
STOP
END IF
END
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